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Abstract

This study evaluated segment-based classification paired
with non-parametric methods (CART® and kNN) and inter-
annual, multi-temporal data in the classification of an
11-year chronosequence of Landsat TM/ETM+ imagery in the
Brazilian Amazon. The kNN and CART® classification meth-
ods, with the integration of multi-temporal data, performed
equally well in the separation of cleared, re-vegetated, and
primary forest classes with overall accuracies ranging from
77 percent to 91 percent, with pixel-based CART® classifica-
tions resulting in significantly lower variance than all other
methods (3.2 percent versus an average of 13.2 percent).
Segmentation did not improve classification success over
pixel-based methods with the used datasets. Through
appropriate band selection methods, multi-temporal bands
were chosen in 38 of 44 total classifications, strongly
suggesting the utility of inter-annual, multi-temporal data for
the given classes and region. The land-cover maps from this
study allow for an accurate annualized analysis of land-
cover and landscape change in the region.

Introduction

The rainforests of Rondonia, Brazil have been subject to
rapid landscape change over the past 30 years due to various
rural development programs and the construction of BR-364,
an interstate highway providing access into the region and
the state of Ronddnia in particular (Browder and Godfrey,
1997; Perz, 2002). The intent of these regional programs
(POLONOROESTE, and PLANALFORO) was to open areas to
settlement for landless sharecroppers and to promote sustain-
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able farming systems such as perennial agriculture. As a
result, the population in Rondénia grew from approximately
111,000 in 1970 to 1,588,600 in 1990, near the start date of
this study (Browder and Godfrey, 1997; Perz, 2002). The
immigration of farmers into the region has led to forest
clearing intended for agriculture, resulting in extensive
deforestation (INPE, 2001). Implications of such considerable
ecological alteration include decreases in global carbon
sequestration and increases in greenhouse gas emissions
(Grace et al.,, 1996; Fearnside, 1997), potential loss of
biodiversity (Lugo, 1988; Fearnside, 1999}, and degradation
of soil (De Souza et al., 1996). Understanding the factors that
influence land-cover conversion over time in the Amazonian
frontier is necessary to address these ecological issues while
promoting sustainable development in the region.

One common pattern of settlement in Rondénia begins
with clearing for perennial and annual agriculture followed
by conversion to pasture and cattle production (Browder,
1996; McCracken et al., 2002). This kind of trajectory, or
land-use pathway through time, can be associated with
socioeconomic conditions, household labor capacity, market
prices of agricultural and forest resources, regulatory prices,
and landowner perceptions to further the understanding of
the smallholder decision process on farm practices and land-
use management (Browder, 1996). Likewise, it is valuable to
understand the impacts of these land-use changes on the
landscape both at a farm level and a more regional scale.

The prominent categories of land-use in the Amazon
include primary forest, pasture, perennial agriculture (cocoa,
coffee), secondary growth, and annual agriculture. The
amount of remaining primary forest in the region has been
a focus of many studies because of its global ecological
importance in terms of carbon sequestration and biodiversity
(Tardin et al, 1979; Skole and Tucker, 1993; Alves et al.,
1998; Alves, 1999), While the intent of the development
programs was to promote sustainable agricultural systems
such as perennial production, pasture has become the
dominant land-use in the region (Browder and Godfrey,
1997; Porro, 2002). Pasture areas tend to be large in size, in
some instances encompassing an entire 100 hectare property.
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On satellite imagery they usually appear as cleared, barren
land during the dry season, and occasionally as re-vegetated
land when few cattle are being managed. Perennial agricul-
ture includes coffee, cocoa, and agroforestry plantations; it
appears as cleared in the first year or two of establishment
and will gradually transition to a re-vegetated shrub stage.
Secondary growth is re-vegetated land that has been aban-
doned following agricultural practices or clearing (Perz and
Walker, 2002). Once permitted to re-grow, these abandoned
areas can return to forest and can serve many of the same
functions as primary forest, both ecelogically and culturally
(Holscher et al., 1997; Walker, 1999; Perz and Walker, 2002).
Secondary growth can range in land-cover from grass with
low-lying shrubs to late successional secondary forest.
Spectrally differentiating between cleared areas and initial
succession and between advanced succession (greater than
10 years, greater than 20 meter canopy) and primary forest
has been a challenge in previous studies (Mausel et al., 1993;
Brondizio et al., 1996; Lu et al., 2003). Annual agriculture
consists of crops such as maize, beans, and rice managed
primarily for subsistence agriculture and for sale in small
local markets (McCracken et al., 2002). Areas in annuals tend
io be very small in size and represent the lowest proportion
of land in production of the aforementioned land-uses.
During the dry season, areas in annual agriculture are fallow
and therefore appear cleared in satellite imagery.

The significant anthropogenic land-uses in the Brazilian
Amazon do not directly correspond to distinct land-cover
classes that are identifiable in satellite imagery. For this
reason it is imperative that ground level information be
utilized in conjunction with remote sensing techniques to
understand both the factors influencing land-use change
and the impacts of land-use changes of smallholder farmers
on the landscape.

Remate sensing techniques have become prominent in
landscape classification in the Amazon Basin largely due to
the expanse of the region and its inaccessibility (Skole and
Tucker, 1993; Roberts et al., 2003). Several studies have
proven the efficiency of remote sensing in image classification
for estimating forest area versus non-forest area with high
overall accuracies (>90 percent or kappa >0.9) and domi-
nated the remote sensing research activity in the Amazon
through the 1980s and 1990s (Tardin et al., 1979; Skole and
Tucker, 1993; Alves et al.,, 1998; Alves, 1999). A more recent
focus of remote sensing applications in the Amazon has been
on land-cover classification beyond forest and non-forest
classes (Donnely-Morrison, 1994; Brondizio et al., 1996;
Moraes ef al., 1998; Roberts et al., 2002; Roberts et al., 2003;
Guild et al., 2004). Generally clearing, re-vegetation, and
forest can be successtully mapped using Landsat imagery in
this region. Guild ef al. (2004} were able to perform a path-
way analysis using three different image years {1984, 1986,
and 1992) in Ronddnia, Brazil. The Landsat T™ imagery was
combined using both the tasseled cap and principal compo-
nents transformations. Unsupervised techniques were used to
train a maximum likelihood classification that produced 17
total land-cover classes of varying combinations of forest,
cleared, flooded, dry, and re-growth. The tasseled cap land-
cover change classification produced an overall accuracy of
79.3 percent {(kappa = 0.78) with individual class accuracies
ranging from 54 percent to 100 percent. Using Landsat
MSS/TM imagery, Roberts ef al. (2002) were able to classify
primary forest, pasture and green pasture, second growth,
soil/urban, water, and cloud using spectral mixture analysis
and a decision tree classifier and were able to obtain an
overall accuracy of 85 percent (kappa = 0.786).

The introduction of multi-temporal imagery is valuable
in land-use/land-cover classification with Landsat T™ data
(Lo et al., 1986; Wynne et al,, 2000; Ippoliti-Ramilo ef al.,
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2003; Guild et al., 2004). Among the most accurate land-use
classification techniques are those using multi-temporal
imagery throughout a single year to exploit seasonal transi-
tions in land-cover (Ippoliti-Ramilo, 2003). Although
intraannual, multi-temporal classification is a successful
technique, it is not practical for use in the tropical region of
Brazil. Within the Amazon Basin acquisition of multiple
cloud-free images within the same year is rarely feasible.
Multi-temporal classification is thus limited to the use of
inter-annual imagery for the majority of the Amazon region.
Several studies have used inter-annual, multi-temporal
imagery to strengthen land-cover identification in tropical
regions (Helmer et al., 2000) including the Brazilian Amazon
(Lucas et al., 1993; Adams et al., 1995; Alves and Skole,
1996; Alves ef al., 2003; Guild et al., 2004). However, most
of these studies have commented on the post-classification
utility of inter-annual imagery in distinguishing between
land-cover classes and have not attempted to use multi-
temporal imagery in the classification phase. For example,
Lucas et al. (1993) used post-classification techniques to
determine patterns of forest re-growth and ultimately a
secondary forest classification was developed.

Most traditional classifiers are parametric, based upon
statistical assumptions, including the multivariate normal
distribution within spectral classes. This assumption does
not fit all applications, and is difficult to implement in
complex landscapes with classes of high variance (Hansen
et al., 1996). Alternatively, non-parametric methods are not
limited by such assumptions and are not based upon class
statistics such as mean vectors and covariance matrices.
Traditionally, land-use/land-cover classification in the
Amazon has been done using parametric algorithms
including minimum distance (Alves ef al., 2003) and
maximum likelihood (Alves and Skole, 1996; Guild et al.,
2004; Pan et al., 2004). The heterogeneity of land-cover
within the Amazon region of Brazil has caused classifica-
tion difficulty in the past (Alves and Skole, 1996; Bron-
dizio et al., 1996). As a result, some have turned to the
use of non-parametric algorithms (Roberts et al., 2002).
Non-parametric techniques, including artificial neural
networks (ANN) and classification and regression trees
(CART®) have become prominent in recent literature to
eliminate the restriction of parametric statistical assump-
tions (Hansen et al., 1996; Friedl and Brodley, 1997;
Lawrence and Wright, 2001; Pal and Mather, 2003; Rogan
et al., 2003; Krishnaswamy et al., 2004). Although ANN
classification has been shown to greatly improve accuracy
over Iraditional parametric methods with reduced training
sets, the process to implement classification is not straight-
forward and can be time consuming (Pal and Mather,
2003). Pal and Mather (2003) found that CART® classifica-
tion provided higher accuracy than ANN classification for
Landsat ETM+ imagery in Eastern England for seven land-
cover types (wheat, potato, sugar beet, onion, peas, lettuce,
and beans). In addition to its non-parametric nature, CART®
is gaining increasing attention due to its ease of use and
computational efficiency (Lawrence and Wright, 2001; Pal
and Mather, 2003; Lawrence ef al., 2004). During the CART®
classification process, a binary tree is created where
decision boundaries are estimated empirically from the
training dala. A test in the form of x; > ¢ is performed at
each node where x; is the feature or spectral band and ¢
is the threshold estimated from the distribution of x;
{Breiman et al., 1984). Several studies have found cart®
to be an acceptable classification method (Hansen et al.,
1996; Lawrence and Wright, 2001; Rogan et al., 2003;
Krishnaswamy et al., 2004) and have shown improvements
in accuracy over traditional parametric classifiers (Friedl
and Brodley, 1997; Pal and Mather, 2003).
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Another non-parametric classification technique that has
been recently explored and improved upon in many forest
cover classifications is k-nearest neighbor (kNN). kNN uses a
fuzzy non-parametric supervised classification (minimum
distance) to assign pixels to informational classes. Rather
than assigning a pixel to the mean of the closest spectral
class, the classifier assigns a pixel to the majority of the k
closest training pixels in spectral space. Serpico et al.
(1996) compared traditional ANN methods with three neural
network techniques and found kNN to have the highest
overall accuracy, however, the difference was not signifi-
cant. While kNN was the most accurate classifier and the
simplest during the training phase, the authors claimed it
to be more difficult during the classification stage than
the neural network classifiers, likely due to the multiple
classifications needed to determine the optimal k value.

The kNN algorithm has been successfully implemented in
several national forest inventory programs, including in
Finland, where it was popularized (Katila and Tomppo,
2001; Tomppo and Halme, 2004) and in the United States
(Franco-Lopez et al., 2001; McRoberts et al., 2002; Haapanen
et al., 2004). In several of these studies forest inventory
information is coupled with satellite imagery to predict
forest and land-use attributes of a continuous digital surface
(McRoberts et al., 2002; Tomppo and Halme, 2004).

The majority of remote sensing classifications in the
Amazon have used point or pixel-specific methods in which
each pixel is classified individually without regard to the
spatial relationship of neighbering pixels (Lo et al., 1986;
Donnelly-Morrison, 1994; Alves and Skole, 1996; Ippoliti-
Ramilo et al., 2003; Guild et al., 2004) although segment
based approaches have gained recent attention (Palubinkas
et al., 1995; Brondizio et al., 1996; Lu et al., 2004b). Pixel-
based classification often results in high heterogeneity giving
low classification accuracy for complex landscapes and
a “salt and pepper” appearance to the classified image.
Contextual or segment-based classification incorporates
spatial relationships among pixels in an attempt to extract
homogeneous objects on the landscape and thus decrease
the heterogeneity that is an artifact of pixel-based methods
(Richards and Jia, 1999; Campbell, 2002). Many studies have
shown an improvement over pixel-based land-use classifica-
tion accuracy through the incorporation of segment-based
methods (Palubinkas et al., 1995; Lobo et al., 1996; Shandley
et al., 1996). One of the primary benefits of segment-based
classification, as noted by De Wit and Clevers (2004), is the
ability to capture the spectral variability within land-use
types such as shadowing, moisture conditions, and species
variability.

Segment-based classification has been used in several
studies within the Amazon region of Brazil (Palubinkas
et al., 1995; Brondizio et al., 1996; Lu et al., 2004h).
Palubinkas et al., (1995) compared the results from eight
different texture based methods (based on a Markov ran-
dom fields model) with traditional minimum distance and
maximum likelihood classifiers to segment Landsat T™
imagery for classification of regenerating forest. Six of the
varying segment extraction approaches used maximum
likelihood classification, while two used minimum distance
classification. Those classifiers that implemented a maxi-
mum likelihood algorithm following segmentation consis-
tently out-performed the pixel-based classification methods
in terms of overall accuracy.

This study evaluated the ability of segment-based
classification paired with non-parametric methods (CART®
and kNN) to classify a chronosequence of Landsat TM/ETM+
imagery spanning from 1992 to 2002 within the state of
Rondénia, Brazil. Pixel-based classification was also imple-
mented for comparison. Inter-annual, multi-temporal com-
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posites were used in each classification in an attempt to

increase the separation; of primary forest, cleared, and re-
vegetated classes withiin a given year.

Objectives

The principal aim of this study was to produce accurate
annual maps of Amazonian land-cover (cleared, re-vegetated,
and primary forest) using non-parametric techniques applied
lo inter-annual, multi ~temporal Landsat TM/ETM+ imagery.
The specific objectives were (a) to determine the preferred
non-parametric classi Fication technique between the k-
nearest neighbor (kNN and classification and regression
trees (CART) methods, (b) to determine whether land-cover
classification using segment-based methods is more accurate
than comparable efforts using per-pixel methods, and (c) to

assess the utility of iraterannual multitemporal data in the
classification of a single year.

Methods

A flowchart outlining the basic processing steps of this
study is shown in Figure 1,

Study Area

The analysis of land-cover pathways was performed in two
study sites located in western Brazil in the state of Rondo-
nia. The first site is located in the municipio of Nova Unido
(UL 62°41'W X 10°48'S, LR 62°29'W X 10°56'S) and the
second in the municipio of Rolim de Moura (UL 62°57'W

X 10°29'S, LR 62°49"W x 10°48'S) (Figure 2). While the
colonization of Rondénia has been occurring since the
seventeenth century, a series of regional development
programs in the 1970s, along with the construction of a
highway providing access to the region, spurred extensive
migration into the region (Mahar, 1979; Fearnside, 1986;
Goodman, 1990; Browder, and Godfrey, 1997). The develop-
ment plan included grid-like settlement areas with individ-
ual plots totaling approximately 100 hectares each. As
farmers have colonized the region the conversion from
forest to various agricultural systems has generally origi-
nated near the road and extended toward the rear of the
property. Prominent agricultural systems include coffee,
cocoa, annuals, and pasture.

-year chronosequence o al

Dark Object Subtraction: =
Image Registration Bar{d Minimum —I—* PCA for each year

L Random training point collection for each year and method I

KNN

Pixel-based classification
Band selection: Leave-one.out

CART ‘
i Pixel-based classification
| Band selection: Gini nule |

‘ Segmentation using bands
| fram per pixel classification

1 |

| from per pixel classificatian

]
E Segmentalion using bands |
1
|

| Segment-based Classification | Segment-based Classification | |
! Band selection: Band selection: |
| Leave-one-out | Ginl nule
i !
L ACCLRACY ASSESSMENT ]!

Figure 1. Flowchart of processing steps.
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Study Areas in the state of Rondonia, Brazil
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Figure 2. Study areas in Ronddnia, Brazil.

The major natural vegetation cover within the study
region is transitional tropical seasonal moist forest (TTSMF).
The dry season extends from June to September, with an
average annual rainfall in Nova Unifo and Rolim de Moura
ranging from 1,600 to 1,700 mm and 2,000 to 2,250 mm,
respectively. Elevation ranges from 100 to 225 meters in
Nova Unido and is 250 meters in Rolim de Moura (IBGE
elevation maps, 1974). The main soil type in Nova Uniio
is a eutrophic yellow-red podsol with patches of eutrophic
litolic soil. In Rolim de Moura the prominent soil type
is a eutrophic yellow-red podsol and non-hydromorphic
cambisol (Projeto Radambrasil Mapa Exploratério de Solos,
1:1 000 000, 1979).

Data and Preprocessing

The digital data consist of a multitemporal series of Landsat
Thematic Mapper (TM) and Enhanced Mapper (TM/ETM+)
images (path 231/row 68) from 1992 through 2002 (Table 1).
Figure 3 provides an example of a Landsat TM image (1992)
for path 231, row 68. All images were registered to the 2002
image, which was rectified by EROS Data Center prior to
purchase. Registration was performed in ERDAS Imagine® 8.7
software. At least 75 control points were created for each
image pair, one-third of which were randomly selected

as check points. A control point root mean squared error
(RMSE) of less than one-fifth pixel for a 1% order transforma-
tion was met for all registrations with check point error not
exceeding 0.21 pixels. Dai and Khorram (1998} found that
an RMSE of less than one-fifth pixel was necessary to achieve
a change error of less than 10 percent. Using these same
criteria for use with multi-temporal image chronosequences
is just as, if not more, needed. Nearest neighbor resampling
was used.

Although conversion to reflectance is desirable when
waorking with multi-temporal imagery, the variety of sources,
preprocessing methods, and the lack of metadata associated
with the imagery precluded it. Due to this limitation, band
minimum dark object subtraction was implemented as a
technique to radiometrically normalize the chronosequence
from 1992 to 2002 (Chavez, 1989).

A principal component analysis (PCA) was performed on
all images to reduce the amount of data and to highlight the
preatest variability within the images.
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TagLe 1. LaANDSAT TM/ETM+ IMAGE DaTes USED N Stupy

Sensor Date

™ july 25, 1992
T™ May 25, 1993
™ July 15, 1994
™ August 3, 1995
™ July 20, 1996
™ June 21, 1897
™ May 23, 1998
ETM+ Aupgust 6, 1999
ETM+ August 24, 2000
ETM+ August 11, 2001
ETM+ May 26, 2002

Figure 3. Full Landsat 7™ image for path 231, row 68
(25 July 1992) in grayscale {bands 4, 3, 2 in R, G, B).
The Nova Uniao study area is outlined in the upper left
portion of the image and the Rolim de Moura study area
is outlined in the lower right portion of the image.

Training Data and Classes
There are several different sources that can be used in
collecting training pixels including in situ data, ancillary
data such as topographic maps, aerial photographs, or satellite
imagery (Richards and Jia, 1999). In remote regions, such as
the Amazon, inaccessibility limits the ability to collect in situ
field data. When collecting training data in a similar remote
environment, Frizzelle et al., (2003) incorporated several
different sources to create a training data set including Gps
data, field sketch maps, a longitudinal social survey, and
satellite imagery. In conjunction with ancillary data the
imagery to be classified has also been used to collect training
and validation points (Cohen et al., 1998; Sader et al., 2003).
As a part of the larger study, research crews collected
detailed information through field interviews with farmers
within both study areas in 1992 and 2002. In addition,
detailed interviews were conducted in conjunction with
GPS point collection in 2003 to gain information on land
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conversion through years 1993 to 2001. In both 1992 and
2002, detailed maps were created of each farm included in
the study (Figure 4). Using information from the 1992

and 2002 maps, detailed interviews in 2003, and Landsat
imagery, a random sample of 838 training pixels was labeled
for each year. Fifty points per class were randomly removed
from each annual training set prior to classification for use
as a validation sample. A random sample of training points
ensures the inclusion of edge and mixed pixels, which are
necessary in avoiding inflated accuracies, particularly in the
validation sample (Powell ef al., 2004).

Figure 4. Example of a detailed map constructed during
the interview processes in 1992 and 2002. P repre-
sents pasture, CA represents coffee, CP represents
copeira or unmanaged land, A represents annuals, MV
represents mata virgem or primary forest. The dashed
lines represent streams running through the property.
This particular farm-level representation is a full 100
hectare property that was sub-divided into two (23A
and 23B) properties with separate ownership.

Based on the literature, the two non-parametric classifi-
cation methods used in this study have differing require-
ments for training data for optimal classification. The same
training data were used for both pixel-based and segment-
based classifications to enable an accurate comparison of
each technique. Hardin (1994) performed several nearest
neighbor classifications, including kNN, using a large training
set where the proportions of samples within classes repre-
sented the proportions within the population. A reduced
training set was also used with all classification methods,
The results indicated that when large training data sets are
used where class proportions are the same as the population
to be classified, nearest neighbor techniques are statistically
superior to the best parametric classifiers, The results from
the reduced training set were not as consistent and were
often inferior to parametric methods. CART® alternatively,
performs best when the training data set has approximately
the same number of samples in each class to prevent over-
representation in class assignment for classes with more
samples (Rogan et al., 2003; Lawrence et al., 2004).

To optimize results for each classification method,
the original dataset was reduced to obtain both a random
sample of proportional classes to the population (for use in
kNN classification} and a random sample of equal classes (for
use in CART® classification) (Figure 5). Each dataset con-
tained the same number of training pixels and was limited
by the number of points in the class with the minimum
samples by year (Table 2).

Three different land-use classes were included in the
study; primary forest, cleared, and re-vegetated, following
the classification scheme of Guild et al. (2004). Forest areas
consist of primary forest. Re-vegetated areas include peren-
nial agriculture following clearing (e.g., cocoa and coffee
plantations), secondary growth, and occasionally “dirty”
poorly managed pasture. The cleared class contains areas
that are primarily rotated for cattle production. Cleared areas
can also represent annual agriculture (which are not vege-
tated during dry season months), recently abandoned areas,
and first year perennial agriculture plots.

Classification
Two non-parametric classification methods, k-nearest
neighbor (kNN) and classification and regression trees
(CART®) were applied to both image pixels and image
segments.

| Random Training Points by Year |

VALIDATION
50 points
randomly removed
per class per year

Remaining
Training Points by
Year

TN

NN CART
Random Equalized
Subsample Random
Subsample

Figure 5. Breakdown of training data subsets for the
validation sample, s subsample, and caRT® subsample.
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TABLE 2. TRAINING POINTS BY YEAR FOR THE VALIDATION SAMPLE, THE kNN Random Subsample, and the carT® Equalized Random Subsample.
Class 1 is Cleared, Class 2 is Re-vegetated, and Class 3 is Primary Forest

Validalion ANN CART
Year Class 1 Class 2 Class 3 Class 1 Class 2 Class 3 Class 1 Class 2 Class 3
1992 50 50 50 131 77 179 129 129 129
1993 50 50 50 173 140 218 177 177 177
1994 50 50 50 199 150 203 184 184 184
1995 50 50 50 226 92 138 152 152 152
1996 50 50 50 216 103 140 153 153 153
1997 50 50 50 226 85 121 144 144 144
1998 50 50 50 260 134 125 173 173 173
1999 50 50 50 217 75 77 123 123 123
2000 50 50 50 245 64 78 129 129 129
2001 50 50 50 197 63 40 100 100 100
2002 50 50 50 162 74 37 91 91 91

Multi-temporal Band Selection

An inter-annual, multi-temporal image from the available
Landsat TM/ETM+ imagery was created to perform land-use
classification of each single date, using the target year, the
three previous (backward) years, and three forward years
where applicable. Previous literature emphasizes the utility
of incorporating multi-temporal imagery in land-use/land-
cover classification (Lo et al., 1986; Alves and Skole, 1996;
Wynne et al., 2000; Guild et al., 2004); however, it was
unknown what combination of years and bands would be
most beneficial to the analysis. For this reason all principal
components (PCs) for the target year were evaluated along
with the first PC from each of the three backward years and
three forward years from the target date (Figure 6). The
extensive processing time of the kNN algorithm limited the
number of total bands that could be evaluated, therefore
only the first PC of the non-target years was evaluated,
which explained greater than 70 percent and up to 91
percent of the variability within all Landsat TM/ETM+
images.

The band selection technique used in the kNN algorithm
is a leave-one-out approach that tests each possible band
(and k) combination using the input training data. The best
band combination is the one that has the highest overall
accuracy. During this band selection process, all pcs that
increase accuracy are selected, even if the increase is only
incremental. CART® 5.0 inherently chooses the best possible
bands to classify the data in a binary tree, and has been
used as a method of band selection (Brieman et al., 1984;
Bittencourt and Clarke, 2004). The Gini splitting rule was
applied to all carT® classifications, which attempts to

[Fargots [Targeta | [Faert [ Target | Tagotet [Farpetva] [raats3

[ pc1 |[ pc1 ][ pc1 ]

PC1
PC2
PC3
PC4
PC5
PC6

[ pC1 || pc1 || PC1 |

Figure 6. Principal component bands evaluated for each
target year and the three forward and backward years.
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separate classes by focusing on one class at a time, and is
given by:

Gini(c) = 1 — Xp} (1)
J

where p; is the probability of class j in ¢. The Gini rule
sequentially looks for the largest class in the training data
and strives to isolate it from all other classes. CART® 5.0
grows trees until it is not possible to grow them any further.
Once each full tree is generated, smaller trees are obtained
by pruning away branches. The CART® 5.0 algorithm uses a
10-fold cross validation approach to prune the full tree.
Pruning is performed so bands that add only small incre-
mental increases in accuracy are eliminated, resulting in the
“optimal” tree.

cART®

CART® classification was performed using carT® 5.0 (Salford
Systems, 2002; Lawrence et al., 2004). There are numerous
attribute selection methods that can be used in the creation
of decision boundaries. Pal and Mather (2003) tested the
effects of five different atiribute selection methods on CART®
classification accuracy and found differences to be minimal
and not important to overall accuracy. Lawrence et al.
(2004) used cART® 5.0 (Salford Systems, 2002) to perform
CART® classification and tested each of the available attrib-
ute selection methods for each application. The authors
used the optimal method, based on overall accuracy, in
final classification. The available selection methods in
CART® 5.0 include Gini, Symmetric Gini, Entropy, Class
Probability, Twoing, and Ordered Twoing. The Gini split-
ting rule and the pruned optimal tree were used in all
CARTY classifications to standardize the procedure.

KNN

Non-parametric kNN classification was performed using a
program developed specifically for this project in Fortran 95.
A Euclidean distance metric was implemented to locate the
k nearest neighbors (Serpico et al., 1996; Franco-Lopez

et al., 2001; McRoberts et al., 2002; Haapanen et al., 2004)
and constant weighting of the nearest neighbors was used
giving all neighbors equal influence over class assipnment,
which has been shown to outperform other weighting
schemes (Franco-Lopez et al., 2001; McRoberts et al., 2002;
Haapanen et al., 2004).

McRoberts et al. (2002) provide a careful discussion
on the selection criterion for k. The authors state that an
objective criterion should be chosen, implemented, and
reported. In addition, the resulting k value should not be
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extended to other studies with differing data sets. They
found in their own study predicting forest land proportion
thal an optimum k-value, using the same objective crite-
rion was 7 = k = 13 for one study area and data set while
it was 21 = k = 33 for another. Our objective criteria for
k selection was the k-value that minimizes overall classifi-
cation error using a leave-one-out evaluation (integrated
into the band selection process) of the training data
with a maximum possible k of 20. This process iterated
through all possible band and k combinations for the
given training dala to select bath the optimal k and band
combination. The maximum threshold (k of 20) was
determined through preliminary testing and no classifica-
tions exceeded a k of 17. This objective criterion was
applied separately for each dataset, therefore the k values
varied by year.

The kNN program was implemented on a 5GI Altix 3300
supercluster to reduce processing time.

Image Segmentation

An object-oriented, multi-resolution segmentation algorithm
(eCognition 3.0) was used to segment each multitemporal
image into image segments for further classification. The
eCognition algorithm is a hierarchical classifier that uses
speciral and shape information to perform segmentation of
imagery at a constant scale throughout the image (Baatz and
Schépe, 2000). The developers of this method claim that it
is robust for a wide variety of data types, results are repeat-
ahle, and the segmentation approach has been successful in
many natural resource applications (Schiewe et al., 2001;
Antunes ef al., 2003; Laliberte et al., 2004; Van Aardt et al.,
2006). The segmentation process used in eCognition serves
to reduce the heterogeneity of objects at a specified scale.
The heterogeneity of image objects is defined by the color
and shape of the input image (eCognition User's Manual,
2003). The default color/shape ratio in eCognition is 0.8/0.2.
This color/shape ratio has been found to be acceptable
(Laliberte et al., 2004), and in some cases optimum, for
segmentation results in natural resource applications (Van
Aardt, 2004), and was found to be acceptable for this study
through visual inspection.

The optimum segmentation for a given application is
also highly dependent on the defined scale parameter.

The scale parameter is a measure of the allowed change

in heterogeneity between two merging objects and serves
as a threshold to terminate segmentation {eCognition User’s
Manual, 2003). The process of determining the optimal
scale parameter is not straightforward. The methods in
recent literature are still highly subjective and have included
a simple visual inspection (Schiewe et al., 2001). The
optimal scale parameter for this study was chosen through
an evaluation of confused training samples. Confused
training samples were training samples of differing classes
that fell within the same image segment. The optimal

scale parameter was determined to be 5 because it was

the smallest scale parameter that could be computed on

all images given the large image size, and also the scale
parameter that minimized the number of confused training
samples. The confused training points that were of
differing classes and fell within the same image object

or segment were removed prior to each classification
(Table 3).

The bands included in the segmentation process were
determined by the bands selected during the pixel-based kNN
and CART® classification (Tables 8 through 11) to optimize
the segmentation for the given data and classes. Multi-
temporal bands were therefore used in all segmentations.
This process resulted in 22 total segmentations for further
classification.
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TaBLe 3. ConrFuSED TRAINING POINTS REMOVED FOR EACH METHOD AND
YEAR FOR SEGMENT-BASED CLASSIFICATION. CLASS 1 1S CLEARED, CLass 2 s
RE-VEGETATED, AND CLASS 3 IS PRIMARY FoResT

kNN CART
Year Class 1 Class2 Class3 Class1 Class2 Class 3
1992 4 3 0 4 4 2
1993 5 8 1 7 6 2
1994 15 14 2 9 5 0
1995 5 5 1 5 9 3
1996 7 8 2 1 2 .
1997 4 4 ] 5 4 4
1998 12 7 3 5 6 2
1999 4 7 5 2 3 1
2000 1 1 0 1 3 2
2001 2 2 1 2 5 5
2002 2 3 1 1 2 2

Accuracy Assessment

The validation data set was used to assess the accuracy of
each classification. There were 50 validation points for each
class per year. Multivariate techniques were used to perform
the accuracy assessment, including both an error matrix and
a kappa coefficient of agreement (Congalton, 1991) by class
and overall classification. As noted by Foody (2004), the
kappa coefficient (formally estimated by K} is based on the
comparison of predicted and actual class labels for each case
in the validation data set, and is calculated as

K‘ — pD pu [2)
T =
where p, is the proportion of cases in agreement and p, is
the proportion of agreement expected by chance. Kappa
variances and Z-scores were calculated to determine the
significance (= 0.05) of each classification (Congalton and
Green, 1999) given the following hypotheses:

Hy:K =
fipk s (@)
K#0
The error matrix was also used to calculate producer’s
accuracy, user's accuracy, and overall accuracy. The pro-
ducer’s accuracy relates to the probability that a reference
sample was correctly mapped and measures the omission
error (1 — producer’s accuracy). In contrast, the user’s accuracy
indicates the probability that a sample from the land-cover
map actually matches what it was in the reference data and
measures the commission error (1 — user’s accuracy).

Eleven classifications were performed for each method
(one per year from 1992 through 2002). A series of F-tests
(Hy: 0y — 0v® = 0, Hy: ¢y® — 05 = 0) determined that the
variances were not equal among methods. Since this result
precluded an analysis of variance, four t-tests were per-
formed (Hy: py® — po® = 0, Hy: p® — 1, # 0) to assess
whether or not the means differed among techniques (n = 11
in all cases). A Kruskal-Wallis test (H,: population medians
are not equal) was included due to the small sample size
and low associated power of the t-tests.

Results

Classification results for the CART® (pixel-based) classifica-
tion are shown in Figure 7 for 1992 and 2002. Evaluation
of summary statistics including overall accuracy (Table 4;
Figure 8), kappa coefficient of agreement (Table 4), the
Kruskal-Wallis test for equal medians (data not shown),
and a series of four t-tests (Table 5) reveal that the classifi-
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Figure 7. Classification results for the carT® pixel-based
classification for years 1992 and 2002 and for each
study area: (a) 1992 Nova Unigo, (b) 2002 Nova Unido,
(c) 1992 Rolim de Moura, and {(d) 2002 Rolim de Moura.
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Figure 8. Box and whisker plot of mean overall classifi-
cation accuracy by method.

TABLE 4, PEeRCENT OVERALL ACCURACY AND KAPPA COEFFICIENT OF
AGREEMENT BY CLASSIFICATION METHOD AND YEAR

KNN CART ANN (seg) CART (seg)

Kappa OA Kappa OA Kappa OA Kappa
Year (%) (%) %) %) (%) %] %) %)
1992 81.3 72.0 87.3 81.0 79.3 69.0 81.3 72.0
1993 86.6 80.0 B7.7 80.0 80.7 71.0 82.0 73.0
1994  88.0 82.0 86.0 79.0 86.0 79.0 B84.7 77.0

1995 84.7 77.0 840 76.0 78.7 68.0 80.0 70.0

1996 86.0 79.0 853 78.0 B2.0 73.0 B33 75.0
1997 89.3 B840 840 760 860 79.0 90.7 86.0
1998 84.0 760 820 73.0 860 79.0 813 72.0
1999 853 780 853 78.0 860 79.0 90.7 86.0
2000 847 770 847 77.0 853 7BO 90.0 850
2001 91.3 870 88.0 820 B86.7 B80.0 B86.0 79.0
2002 79.3 690 833 750 773 G660 86.0 79.0
Mean 85.5 78.3 852 777 831 746 851 77.6
o 10.5  23.7 33 6.6 114 257 141 317
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TaBlLE 5. T-TESTS AND ASSOCIATED pvalues FOR THE CLASSIFICATION OF
CLEARED, RE-VEGETATED, AND PRIMARY FOREST UsING FOUR METHODS (N THE
Amazon REGION OF BRAZIL

t-test p-value (t-test)
kNN (pixel) versus CaRT (pixel) 0.7831
CART (pixel) versus CART (seg) 0.9454
kNN (seg) versus CART (seg) 0.2250
NN (pixel) versus iNN (seg) 0.1181

cation methods performed equally well and were not
significantly different. The Kruskal-Wallis test results
indicate that the classification medians are not different
(p = 0.605) and the t-tests indicate that the classification
means are not different (Table 5, n = 11 for all methods).
All classifications were significant at an alpha level of 0.05
and the overall accuracies (ranging from 77 percent to 91
percent) are comparable to other studies (Roberts et al.,
2002). Although the overall accuracies were not signifi-
cantly different between the four classification methods,
an F-test revealed that the variances between the CART®
(pixel-based) technique were significantly lower (¢* =
3.60) than all of the three other classification methods
(kNN pixel-based ¢* = 11.5, p = 0.04; kNN segment-based
¢® = 12.6, p = 0.03; and CART® segment-based o® = 15.5,
p = 0.02) indicating that this technigue mproduced more
consistent results in this case, The CART® (segment-based)
classification, however had variances similar to the kNN
(pixel and segment-based) classifications.

Tables 6 and 7 summarize the mean producer’s and
user’s accuracies by class for each classification method.
All classifications successfully separated primary forest
with both producer's and user’s accuracies greater than 90
percent, The classes that were the most difficult to separate
were the re-vegetated and cleared classes. All methods
tended to over-represent the cleared class by labeling
many of the re-vegetated areas as cleared. This was particu-
larly prevalent with both the pixel and segment-based kNN
classitications, as can be inferred from the large discrepan-
cies in producer’s and user’s accuracies between the cleared
and re-vegetated classes (Tables 6 and 7).
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TaBLE 6. MEean PRODUCER'S ACCURACIES FOR ALL CLASSIFICATIONS
(Bounps ARE GIVEN AT A 95 PERCENT CONFIDENCE LEVEL)

Producer’'s Accuracy

KNN CART KNN CART
{Pixel- (Pixel- (Segment- (Segment-
Based) Based) Based) Based)
Cleared 95.5% 88.2% 92.7% 84.4%
*+ 2.0% *5.1% * 3.0% *5.4%
Re-Vegetated 67.3% 73.5% 65.7% 80.0%
* 5.2% +5.7% + 7.6% +4.5%
Primary 93.1% 93.8% 91.3% 90.9%
Foresi + 3.1% + 2.1% + 3.6% + 4,0%

TaBLE 7. MEeaAN UseR's ACCURACIES FOR ALL CLASSIFICATIONS (BounDs
ARE GIVEN AT A 95 PERCENT CONFIDENCE LEVEL)

User's Accuracy

As suggested by McRoberts et al. (2002), the optimal k
varied drastically by dataset (Tables 8 and 10) ranging from
a k of 1 to 17. This result reiterates that no one k can be
applied to all classifications within the same study region
or with varying datasets. Similarly, the number of nodes
selected through the Gini rule and 10-fold cross validation
(cART®) varied drastically across datasets from 3 to 21.

Tables 8 through 11 summarize the pCs for the target
vear and the backward and forward years selected for kNN
and CART® classifications using the leave-one-out approach
and the Gini splitting rule with pruning, respectively. For
target years 1992, 1993, and 1994, all backward years could
not be evaluated in the band selection processes, and for
target years 2000, 2001, and 2002, all forward years could
not be evaluated in the band selection processes, as indi-
cated by the shaded boxes in Tables 8 through 11. Multitem-
poral bands (either forward or backward years) were selected
for 38 out of the 44 total classifications, with bands selected
for all of the 22 pixel-based classifications and 16 out of the
22 segment-based classifications. Due to the years of imagery
included in the study (1992 through 2002), not all of the

kNN CART KNN CART
(Pixel- {Pixel- (Segment- (Segment-  desired years (three forward and three backward from the
Based) Based) Based) Based) target year) were able to be included for all classifications
leaving 20 total classifications where all desired forward and

Cleared 78.3% 82.1% 75.9% 85.3% backward years were used as inputs. The band that was

= &b = 3'1:/" :,S.SD":u = 3‘30% selected most for both kNN and CART® methods was the first
Re=Vepatated _?7;'52’.2 524'23:,", 3'5437’00, 125.281"; PC of the target year (8 of 10, and 10 of 10 classifications,
Primary 732.-7'}.:: 52"5.,,{)" _92_'9[32) ?}5_'2%0 respectively) followed by the second PcC of the target year (7
Forest + 2,30 <259 + 2.9% +1.6% of 10, and 8 of 10 classifications, respectively). This is to be

expected, as the first two principal components explain the
TABLE 8. BANDS AND K SELECTED BY YEAR USING A LEAVE-ONE-OUT APPROACH FOR PIXEL-BASED KNN CLASSIFICATIONS BY YEAR
Selected Bands and k: innN Pixel Based Classification
Target Year Targel Year Target Year Target Year Target Year Target Year Target Year

Target Year — 3 (1st PO) — 2 (1st rC) ~ 1 (1st rc) (all 6 pC's) + 1 (1st po) + 2 (1st FC) + 3 (1st pC) k
1992 N/A N/A N/A 1,6 1 1 0 11
1993 N/A N/A 0 1,2,3,5 1 1 0 7
1994 N/A 0 o 1,3 0 ] 1 3
1995 0 1 1 1,2,5,6 0 1 1 3
1996 0 1 1 1,5,6 0 0 1 17
1997 0 1 0 1,2,3,6 1 0 0 16
1998 0 0 1 2,3 0 1 0 4
1999 0 1 0 1,2,4,5,6 1 0 1 4
2000 0 0 1 1,2,6 1 1 N/A 6
2001 0 0 1 1,3,5,6 0 N/A N/A 3
2002 0 1 1 2,5,6 N/A N/A N/A 9

TaBLE 9. Banps SeLecTeD AND NuMBER OF NoDES IN OpTIMAL TREE UsiNG THE GINI SELECTION METHOD AND
10-roLb CROSS VALIDATION FOR PIXEL-BASED CART® CLASSIFICATION BY YEAR

Selected Bands: CART Pixel-Based Classification

Targel Year Target Year Target Year Target Year Target Year Target Year Target Year
Target Year — 3 (1st PC) — 2 (1st PC) — 1 (15t PC) (all & rc's) + 1 (1st PQ) + 2 (1st rC) + 3 {(1st PC) Nodes
1992 N/A N/A N/A 1,2,3,5,6 1 1 1 21
1993 N/A N/A 1 1,2,3,4,6 0 1 1 20
1994 N/A 1 1 1,3,4 1 0 0 12
1995 0 0 0 1,2 1] 1 0 5
1996 0 0 1 1,2,3,5 1 0 1 17
1997 0 0 1 1 0 0 0 3
1998 0 0 1 1,2,3,4 1 1] 0 12
1999 1 1 1 1,2,3 1 1 0 16
2000 1 1 0 1,2 1 0 N/A 14
2001 1 0 0 1 0 N/A N/A 3
2002 1 0 1 1,2,3 N/A N/A N/A 7
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TasLe 10. Banps anD K Selected by Year Using a Leave-One-Out Approach for Segment-based kNN Classifications by Year

Selected Bands and k: kNN Segment Based Classification

Target Year Target Year Targel Year Target Year Target Year Target Year Target Year
Target Year — 3 (1st pc) — 2 (1s1 PC) — 1 (1st rC) (all 6 PC’s) + 1 (1st pc) + 2 (1st pc) + 3 (st PC) k
1992 N/A N/A N/A 1,3,5 0 0 0 14
1993 N/A N/A 1 1,34 1 1 1 1
1994 N/A 0 8] 1,3 0 a 0 8
1995 0 0 1 1,2 1 0 0 4
1996 0 0 0 1,3,6 0 1 1 13
1997 0 1 1 2,34 0 1 0 9
1998 0 0 V] 1,3,4 0 0 1] 5
1999 0 0 1 1,2,4,6 aQ 0 o 15
2000 0 0 o 1,2,3,6 ] 1 N/A 5}
2001 1 0 1] 1,2,3,5,6 0 N/A N/A 5
2002 0 0 0 153 N/A N/A N/A 7
TaBLE 11. BanDS SELECTED AND NUMBER ©F NODES IN OPTIMAL TREE USING THE GINI SELECTION METHOD AND
10-roLD CROSS VALIDATION FOR SEGMENT-BASED CART® CLASSIFICATIONS BY YEAR
Selected Bands: CART Segment-Based Classification
Target Year Target Year Target Year Target Year Target Year Target Year Target Year
Target Year — 3 (1st Q) - 2 (1s1 pC) — 1 (1st PC) (all 6 pc’s) + 1 (1st PC) + 2 (1st PC) + 3 (1st Pc) Nodes
1992 N/A N/A N/A 1 0 0 0 3
1993 N/A N/A 1 1,2,3 1 1 1 14
1994 N/A 1 0 1,2 0 o] 1 6
1995 1 1 0 1,2,3 1 1 0 13
1996 1 0 0 1.2,3 0 §] 1 8
1997 0 0 1] 1,2 0 0 o 6
1998 0 0 1 1,2,3,4 1 4] a 8
1999 1 0 1] 1 0 1] 0 4
2000 1 0 0 1 1 0 N/A 7
2001 1 0] 0 1,3 0 N/A N/A 5
2002 0 1 1 1,2,3,6 N/A N/A N/A 12

majority of the variance within most multispectral images
(Richards and Jia, 1999) and explained over 90 percent of
the variance within all images included in this study. The
first principal component of the first forward and first
backward years was also commonly selected (11 and 8 times
out of 20 classifications, respectively). The fourth, fifth, and
sixth PCs were commonly selected using the kNN unpruned
leave-one-out method (13 of 20 classifications), while the
CART® Gini index with pruning did not commonly select
those PCs (3 of 20 classifications).

Discussion

This study indicates that multitemporal classification using
non-parametric k-nearest neighbor and classification and
regression trees can accurately separate cleared, re-vegetated,
and primary forest classes in the Brazilian Amazon with
accuracies comparable to past studies (Roberts et al., 2002).
The tested non-parametric techniques were relatively simple
to implement, particularly since there was no need to meet
the statistical assumptions inherent to common parametric
decision rules (e.g., that spectral classes have multivariate
normal distributions). The CART® method is computationally
simpler than the kNN method, and therefore took less time to
Process.

The kNN and CART® band selection techniques differed in
that the selected CART® bands were pruned using 10-fold cross
validation while no pruning was involved in the leave-one-out
band selection process of kNN. Pruning eliminates bands from
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the classification process that add only small, incremental
increases in classification accuracy. Because no pruning

was incorporated into the kNN classification, the bands that
increased classification accuracy, even if only slightly, were
included in the classification. This may reveal the reason for
the common selection of PCs explaining very little variance
within the original image (PC bands 4, 5, and 6, explaining
less than four percent of the variance of the original image
when combined) for kNN classifications, while the cART®
method rarely used these bands in the optimal classification
tree. For example, the 1995 pixel-based kNN classification
included PCs 5 and 6 of the target year, while the 1995 pixel-
based CART® classification did not. However, these two PCs
were included in the un-pruned 1995 pixel-based CART® tree.
These bands were eliminated from the optimal tree because of
the low contribution these PCs made to the classification.
Table 12 gives the variable importance for each of the 18 pCs
used in the band-selection process for the 1995 pixel-based
CART® classification with the score reflecting the contribution
of each PC to the classification of the data.

Bath kNN and CART® performed equally well in terms of
overall accuracy. However, the pixel-based CART® classifica-
tion had significantly lower variance among the 11 annual
classifications. This indicates that the CART® classification
was thus accurate and consistent, which is desirable when
evaluating land-cover change over several subsequent
vears. If the terminal years are eliminated (where no
multitemporal dates were available either backward in time
or forward in time), however, the results from the kNN
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TaBLE 12, VARIABLE IMPORTANCE OF THE 1995
PixEL-BASED CART® CLASSIFICATION

Year Band Score

Target PC1 100 EHRRIRR AR
Target + 1 PC1 87 T
Target + 2 PC1 68 AR
Target + 3 PC1 64 R
Target — 1 PC1 62 (RN
Target — 2 PC1 46 R
Target — 3 PC1 20 Uit

Target PC2 17 il

Target PC3 8 I

Target PCs 5 |

Target PC5 5 I

Target PC4 3

classifications are more consistent (also reflected in

Figure 8) indicating that the difference in variance between
the kNN and CART® methods lies primarily within these two
years (1992 and 2002).

Although the cART® method produced more consistent
results in the pixel-based case, indicated by low variability
among the 11 annual classifications, this result did not
carry through to the segment-based case. Furthermore,
segment-based classification was not significantly better than
pixel-based classification for either the kNN or CART® non-
parametric methods.

Segment-based classification, however, has been suc-
cessful and has been an improvement over pixel-based
classification in many previous studies (Lobo et al., 1996;
Shandley et al., 1996) including in the Amazon region
(Palubinkas et al., 1995; Lu et al., 2004b). This current
research differs from these previous studies in that multi-
temporal imagery was used in segment creation and classifi-
cation. The use of inter-annual, multi-temporal imagery in
the segmentation process may not be appropriate due to
changes occurring in the landscape over time and the
inability for segments to act as continuous units through
several consecutive years. Plate 1 shows a small portion of
the segmentation used in the 1995 CART® classification
overlaid on the 1992 Landsat T™ image and the 1995
Landsat T™ image. The bands used in segmentation did not
include the 1992 pC; however, the 1992 PC was used in the
segment-based CART® classification (Tables 9 and 11). From
inspection of the Landsat T™ images, it is apparent that the
highlighted segment was not one continuous land-cover in
both years.

All classifications accurately separated primary forest
from cleared and re-vegetated classes. Differentiating pri-
mary forest from secondary growth has been difficult in
past studies due to the spectral similarities in late succes-
sional secondary growth or re-vegetation to primary forest
(Brondizio et al.,, 1996). Several studies have improved the
classification of secondary forest growth through the incor-
poration of multitemporal Landsat TM/ETM+ data (Lucas
et al., 1993; Nelson et al., 2000; Castro et al., 2003; Lu et dl.,
2004a). These studies, however, have focused on the use
of multi-temporal imagery to monitor forest growth and
land-cover change over time and have not used the multi-
temporal data in the classification of a single year (Lucas
ef al., 1993; Nelson et al., 2000; Lu et al., 2004a). The ability
to accurately separate these two classes in the current study
may be a result of the incorporation of multi-temporal data
in the classification of a single year or one point in time.
Many of the CART® classifications selected a backward multi-
temporal year to specifically separate re-vegetated areas from
primary forest. Plate 2 illustrates the 2001 CART® pixel-based
classification and corresponding Landsat T™ (1998) and
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Landsat ETM+ (2001) images. The areas highlighted in white
were classified as re-vegetated in 2001. From inspection of
the 2001 Landsat image alone, these areas are indistinguish-
able from surrounding primary forest. Through evaluation of
the 1998 image, it is more evident that these areas had been
cleared in the past, The 1998 pPC was used in the 2001 CART®
pixel-based classification specifically to separate primary
forest and re-vegetated classes (Table 9), and may explain
why these areas were classified as re-vegetated rather than
primary forest in this case. It is possible that the addition of
more inter-annual, multi-temporal data may further increase
the separability of re-vegetated and primary forest classes.
The incorporation of inter-annual, multi-temporal data in
this manner, in conjunction with the appropriate ground
level data, may contribute to current efforts in the classifica-
tion of secondary forest growth for use in biomass or farest
stand age estimation and to subsequently improve carbon
estimates.

The incorporation of inter-annual, multi-temporal
imagery may have also played a role in the separation
between cleared and re-vegetated areas. Guild et al. (2004)
found that areas that were cleared for successive years
were predominantly used for pasture and areas that were
infrequently cleared with periods of re-vegetation were
predominantly used for perennial agriculture. The use of
forward pcs were often used in CART® to separate cleared
from re-vepetated classes, such as the 1996 pixel-based
CART® classification that used both the 1997 and 1999 PCs to
specifically target these two classes.

Overall, inter-annual, multi-temporal data was useful in
the separation of cleared, re-vegetated, and primary forest
classes as indicated by Tables 8 through 12. Table 12 reveals
how important inter-annual, multi-temporal data were for
the 1995 pixel-based CART® classification. With exception of
the first PC of the target year, all forward and backward rcs
were more important than all of the other target year pCs.

With the dataset used in this study, CART® (pixel-based)
was the preferred classifier due to its consistency and
computational efficiency. Additionally, this classifier did not
over-represent the cleared class (through labeling re-vege-
tated areas as cleared) to the extent of the kNN classifier.
Although the differences were not significant, the increase
in accuracy between these classes is valuable.

Conclusions
The Amazon basin remains a major hotspot of tropical
deforestation (Lepers et al., 2005), presenting a clear need
for timely, accurate, consistent data on land-cover change.
Annual classifications produced using inter-annual, multi-
temporal imagery were quite accurate using both kNN and
CART®. The results are comparable to previous studies,
and are of a quality that enables the use of these maps in
subsequent analysis of landscape change and deforestation
processes. While the non-parametric classifiers performed
equally well in terms of overall accuracy, the consistency
among pixel-based CART® classifications, coupled with the
computational efficiency of the technique, suggest that it
is preferred. Additionally, slight improvements over kNN
methods were observed (although not significant) in the
separation of cleared and re-vegetated land-covers.
Although segment-based classifiers have resulted in
improved classifications over traditional pixel-based
methods in past research in the Amazon (e.g., Palubinkas
et al., 1995), this finding was not observed with the data used
in this study. The ability for individual segments to act as a
continuous unit through time is not always feasible at the
smallest scale parameter that could be used, indicating that
the use of segments in classification when also incorporating
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Plate 2. 2001 caRT® pixel-based classification and corresponding Landsat ™ (1998) and Landsat ETM
(2001) images. From inspection of the 2001 Landsat image alone, the areas encompassed by the white
polygons are indistinguishable from surrounding primary forest; the 1998 image reveals that these areas
had been cleared in the past.

multi-temporal data may be inappropriate. The creation and The band-selection methods embedded in both the
use of segments rather than individual pixels in classification ~ CART® and kNN classifications found that pcs of additional
did not significantly change overall accuracy, and was years (supplementary to the PCs of the target year),
therefore an unnecessary step in the classification process. increased accuracy for all pixel-based classifiers and for 16
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of the 22 segment-based classifiers, strongly implying the
utility of inter-annual, multi-temporal data in separating
cleared, re-vegetated, and primary forest in the Brazilian
Amazon.

There is a potential to extend these methods to other
areas of Rondénia as well as other tropical regions lo under-
stand differences of land-cover change at varying scales.
Additionally, the utility of multi-temporal bands should be
evaluated further through the inclusion of more forward and
backward years and also the inclusion of additional princi-
pal component bands or raw image bands. The inclusion of
added data, however, stretches the computational efficiency
of kNN when using a leave-one-out band and k selection
approach. As such, using 10-fold cross validation is recom-
mended for larger datasets.

The accurate, annual land-cover maps produced in this
study are essential to a fuller understanding of the patterns
and processes of deforestation in the Amazon basin. Similar
datasets have been successfully used in the Amazon to
understand and predict population-environment dynamics
at the household level through the incorporation of small
farm holder surveys and landscape mstrics (Pan ef al.,
2002), and in other tropical regions to analyze socioeco-
nomic drivers of land-use and land-cover change at multi-
ple scales using a geographic approach (e.g., Overmars and
Verburg, 2005).
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